资源类型

期刊论文 1678

会议视频 42

年份

2024 3

2023 140

2022 171

2021 161

2020 138

2019 123

2018 105

2017 108

2016 73

2015 88

2014 56

2013 47

2012 39

2011 49

2010 51

2009 49

2008 60

2007 72

2006 47

2005 34

展开 ︾

关键词

遗传算法 9

优化 7

神经网络 7

医学 5

可持续发展 5

多目标优化 4

机器学习 4

目标识别 4

能源 4

预测 4

BP神经网络 3

COVID-19 3

人工智能 3

信息技术 3

工程管理 3

智能制造 3

环境 3

算法 3

CAN总线 2

展开 ︾

检索范围:

排序: 展示方式:

Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater

Tian WAN,Guangming ZHANG,Fengwei DU,Junguo HE,Pan WU

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 967-972 doi: 10.1007/s11783-014-0690-9

摘要: An innovative advanced wastewater treatment process combining biologic aerated filter (BAF) and sulfur/ceramisite-based autotrophic denitrification (SCAD) for reliable removal of nitrogen was proposed in this paper. In SCAD reactor, ceramisite was used as filter and Ca(HCO ) was used for supplying alkalinity and carbon source. The BAF-SCAD was used to treat the secondary treatment effluent. The performance of this process was investigated, and the impact of temperature on nitrogen removal was studied. Results showed that the combined system was effective in nitrogen removal even at low temperatures (8 °C). Removal of total nitrogen (TN), -N, N reached above 90% at room temperature. Nitrification was affected by the temperature and nitrification at low temperature (8 °C) was a limiting factor for TN removal. However, denitrification was not impacted by the temperature and the removal of -N maintained 98% during the experimental period. The reason of effective denitrification at low temperature might be the use of easily dissolved Ca(HCO ) and high-flux ceramisite, which solved the problem of low mass transfer efficiency at low temperatures. Besides, vast surface area of sulfur with diameter of 2–6 mm enhanced the rate of microbial utilization. The removal of nitrate companied with the production of , and the average concentration of was about 240 mg·L . These findings would be beneficial for the application of this process to nitrogen removal especially in the winter and cold regions.

关键词: autotrophic denitrification     biologic aerated filter (BAF)     sulfur/ceramisite-based autotrophic denitrification (SCAD)     advanced nitrogen removal    

Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering

Daoroong SUNGTHONG, Debra R. REINHART

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 149-158 doi: 10.1007/s11783-011-0324-4

摘要: Hydrogen sulfide (H S) emitted from construction and demolition waste landfills has received increasing attention. Besides its unpleasant odor, long-term exposure to a very low concentration of H S can cause a public health issue. In the case of construction and demolition (C&D) waste landfills, where gas collection systems are not normally required, the generated H S is typically not controlled and the number of treatment processes to control H S emissions in situ is limited. An attractive alternative may be to use chemically or biologically active landfill covers. A few studies using various types of cover materials to attenuate H S emissions demonstrated that H S emissions can be effectively reduced. In this study, therefore, the costs and benefits of H S-control cover systems including compost, soil amended with lime, fine concrete, and autotrophic denitrification were evaluated. Based on a case-study landfill area of 0.04 km , the estimated H S emissions of 80900 kg over the 15-year period and costs of active cover system components (ammonium nitrate fertilizer for autotrophic denitrification cover, lime, fine concrete, and compost), ammonium nitrate fertilizer is the most cost effective, followed by hydrated lime, fine concrete, and yard waste compost. Fine concrete and yard waste compost covers are expensive measures to control H S emissions because of the large amount of materials needed to create a cover. Controlling H S emissions using fine concrete and compost is less expensive at landfills that provide on-site concrete recovery and composting facilities; however, ammonium nitrate fertilizer or hydrated lime would still be more cost effective applications.

关键词: hydrogen sulfide emissions     construction and demolition waste     autotrophic denitrification     landfill biocovers    

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1674-4

摘要:

● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system

关键词: Anammox     Denitrification     FeS     NH4+/NO3     Sulfammox    

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 617-633 doi: 10.1007/s11705-022-2258-8

摘要: MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.

关键词: MnOx     Sm–Mn     catalyst     NH3-SCR     sulfur resistance    

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1236-y

摘要: • Fe(III) accepted the most electrons from organics, followed by NO3‒, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3‒ with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.

关键词: Constructed wetland     Sulfur cycle     Electron transfer     Denitrification    

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathodein lithium-sulfur batteries

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 976-987 doi: 10.1007/s11705-019-1897-x

摘要: Hierarchically-porous carbon nano sheets were prepared as a conductive additive for sulfur/polyacrylonitrile (S/PAN) composite cathodes using a simple heat treatment. In this study, kombucha (that was derived from symbiotic culture of bacteria and yeast) carbon (KC) and graphene oxide (GO) were used as a carbon host matrix. These rational-designed S/PAN/KC/GO hybrid composites greatly suppress the diffusion of polysulfides by providing strong physical and chemical adsorption. The cathode delivered an initial discharge capacity of 1652 mAh·g at a 0.1 C rate and a 100 cycle capacity of 1193 mAh·g . The nano sheets with embedded hierarchical pores create a conductive network that provide effective electron transfer and fast electrochemical kinetics. Further, the nitrogen component of PAN can raise the affinity/interaction of the carbon host with lithium polysulfides, supporting the cyclic performance. The results exploit the cumulative contribution of both the conductive carbon matrix and PAN in the enhanced performance of the positive electrode.

关键词: sulfur cathode     kombucha SCOBY     graphene oxide     polyacrylonitrile     lithium-sulfur battery    

Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayersfor lithium-sulfur batteries

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 511-522 doi: 10.1007/s11705-021-2068-4

摘要: Lithium-sulfur batteries have been regarded as the next-generation rechargeable batteries due to their high theoretical energy density and specific capacity. Nevertheless, the shuttle effect of lithium polysulfides has hindered the development of lithium-sulfur batteries. Herein, a novel zirconium-based metal-organic framework-801 film on carbon cloth was developed as a versatile interlayer for lithium-sulfur batteries. This interlayer has a hierarchical porous structure, suitable for the immobilization of lithium polysulfides and accommodating volume expansion on cycling. Moreover, the MOF-801 material is capable of strongly adsorbing lithium polysulfides and promoting their catalytic conversion, which can be enhanced by the abundant active sites provided by the continuous structure of the MOF-801 films. Based on the above advantages, the lithium-sulfur battery, with the proposed interlayer, delivers an initial discharge capacity of 927 mAh·g–1 at 1 C with an extremely low decay rate of 0.04% over 500 cycles. Additionally, a high area capacity of 4.3 mAh·cm–2 can be achieved under increased S loading.

关键词: lithium-sulfur batteries     metal-organic framework-801 film     interlayer     shuttle effect    

Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst

Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 88-94 doi: 10.1007/s11705-013-1301-1

摘要: The effect of adding Co, Ni or La on the methanation activity of a Mo-based sulfur-resistant catalyst was investigated. As promoters, Co, Ni and La all improved the methanation activity of a 15% MoO /Al O catalyst but to different extents. Similar improvements were also found when Co, Ni or La was added to a 15% MoO /25%-CeO -Al O catalyst. The promotion effects of Co and Ni were better than that of La. However, the catalytic methanation activity deteriorated the most with time for the Ni-promoted catalyst. The used catalysts were analyzed by nitrogen adsorption measurement, X-ray diffraction and X-ray photoelectron spectroscopy.

关键词: sulfur-resistant     methanation     promoter    

amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 194-205 doi: 10.1007/s11705-022-2206-7

摘要: The shuttle effect of soluble polysulfides is a serious problem impeding the development of lithium−sulfur batteries. Herein, continuous amino-functionalized University of Oslo 66 membranes supported on carbon nanotube films are proposed as ion-permselective interlayers that overcome these issues and show outstanding suppression of the polysulfide shuttle effect. The proposed membrane material has appropriately sized pores, and can act as ionic sieves and serve as barriers to polysulfides transport while allowing the passage of lithium ions during electrochemical cycles, thereby validly preventing the shuttling of polysulfides. Moreover, a fast catalytic conversion of polysulfides is also achieved with the as-developed interlayer. Therefore, lithium−sulfur batteries with this interlayer show a desirable initial capacity of 999.21 mAh·g–1 at 1 C and a durable cyclic stability with a decay rate of only 0.04% per cycle over 300 cycles. Moreover, a high area capacity of 4.82 mAh·cm–2 is also obtained even under increased sulfur loading (5.12 mg·cm–2) and a lean-electrolyte condition (E/S = 4.8 μL·mg–1).

关键词: lithium−sulfur batteries     amino-functionalized University of Oslo 66 membrane     polysulfide     interlayer    

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 93-101 doi: 10.1007/s11705-022-2175-x

摘要: Defect construction and heteroatom doping are effective strategies for improving photocatalytic activity of carbon nitride (g-C3N4). In this work, N defects were successfully prepared via cold plasma. High-energy electrons generated by plasma can produce N defects and embed sulfur atoms into g-C3N4. The N defects obviously promoted photocatalytic degradation performance that was 7.5 times higher than that of pure g-C3N4. The concentration of N defects can be tuned by different power and time of plasma. With the increase in N defects, the photocatalytic activity showed a volcanic trend. The g-C3N4 with moderate concentration of N defects exhibited the highest photocatalytic activity. S-doped g-C3N4 exhibited 11.25 times higher photocatalytic activity than pure g-C3N4. It provided extra active sites for photocatalytic reaction and improved stability of N defects. The N vacancy-enriched and S-doped g-C3N4 are beneficial for widening absorption edge and improving the separation efficiency of electron and holes.

关键词: g-C3N4     nitrogen defect     sulfur doping     photodegradation     plasma    

Toxic effect of sodium perfluorononyloxy-benzenesulfonate on in aerobic denitrification, cell structure

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1391-9

摘要:

• OBS inhibited the growth of P. stutzeri and destroyed its structure.

关键词: Sodium perfluorononyloxy-benzenesulfonate     Aerobic denitrification     Pseudomonas stutzeri     Ecotoxicity     ROS     Persist organic pollutants     Toxicity     Denitrification     Microbiology    

Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1498-z

摘要:

• The autotrophic nitrogen removal combining Feammox and Anammox was achieved.

关键词: Feammox     Anammox     Extracellular electron transfer     Electron shuttle     Activated carbon    

Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 334-346 doi: 10.1007/s11705-022-2209-4

摘要: The release and control of sulfur species in the pyrolysis of fossil fuels and solid wastes have attracted attention worldwide. Particularly, thiophene derivatives are important intermediates for the sulfur gas release from organic sulfur, but the underlying migration mechanisms remain unclear. Herein, the mechanism of sulfur migration during the release of sulfur-containing radicals in benzothiophene pyrolysis was explored through quantum chemistry modeling. The C1-to-C2 H-transfer has the lowest energy barrier of 269.9 kJ·mol–1 and the highest rate constant at low temperatures, while the elevated temperature is beneficial for C−S bond homolysis. 2-Ethynylbenzenethiol is the key intermediate for the formation of S and SH radicals with the overall energy barriers of 408.0 and 498.7 kJ·mol–1 in favorable pathways. The generation of CS radicals is relatively difficult because of the high energy barrier (551.8 kJ·mol–1). However, it can be significantly promoted by high temperatures, where the rate constant exceeds that for S radical generation above 930 °C. Consequently, the strong competitiveness of S and SH radicals results in abundant H2S during benzothiophene pyrolysis, and the high temperature is more beneficial for CS2 generation from CS radicals. This study lays a foundation for elucidating sulfur migration mechanisms and furthering the development of pyrolysis techniques.

关键词: benzothiophene     sulfur migration     pyrolysis     density functional theory    

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1503-6

摘要:

H. venusta TJPU05 showed excellent HN-AD ability at high salinity.

关键词: Salt-tolerant bacteria     H. venusta TJPU05     Heterotrophic nitrification and aerobic denitrification     High-salinity wastewater    

Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge

Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1067-2

摘要:

• UASB with SMD granules was operated with high removal efficiency of COD and NO3--N.

Methanosaetaceae was absolute predominant methanogen in SMD granules.

• The methanogen quantity and activity decreased as C/N decreased from 20:1 to 5:1.

• Bacterial community succession happened with C/N decreasing.

关键词: Simultaneous methanogenesis and denitrification (SMD)     Methanogens     Community structure     Diversity index     Granular sludge    

标题 作者 时间 类型 操作

Combined biologic aerated filter and sulfur/ceramisite autotrophic denitrification for advanced wastewater

Tian WAN,Guangming ZHANG,Fengwei DU,Junguo HE,Pan WU

期刊论文

Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering

Daoroong SUNGTHONG, Debra R. REINHART

期刊论文

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

期刊论文

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

期刊论文

Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm

Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou

期刊论文

Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathodein lithium-sulfur batteries

Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru

期刊论文

Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayersfor lithium-sulfur batteries

期刊论文

Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst

Can LIN, Haiyang WANG, Zhenhua LI, Baowei WANG, Xinbin MA, Shaodong QIN, Qi SUN

期刊论文

amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur

期刊论文

Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic

期刊论文

Toxic effect of sodium perfluorononyloxy-benzenesulfonate on in aerobic denitrification, cell structure

期刊论文

Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic

期刊论文

Theoretical study on the mechanism of sulfur migration to gas in the pyrolysis of benzothiophene

期刊论文

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

期刊论文

Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge

Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo

期刊论文